
RGL: A R-library for 3D visualization with
OpenGL

Daniel Adler, Oleg Nenadić, Walter Zucchini

Institut für Statistik und Ökonometrie, University of Göttingen 1

Abstract

RGL is a library of functions that offers three-dimensional, real-time visu-
alization functionality to the R programming environment. It ameliorates a
shortcoming in the current version of R (and most other statistical software
packages), namely the inability to allow the user to conveniently generate
interactive 3D graphics.
Since 3D objects need to be projected on a 2D display, special navigation
capabilities are needed to provide insight into 3D relationships. Features such
as lighting, alpha blending, texture mapping and fog effects are used to en-
hance the illusion of three-dimensionality. Additional desirable features for
interactive data analysis in 3D are the ability to rotate objects, and to zoom
in/out so as to examine details of an object, or alternatively, to view it from
a distance.
The goal of the project described here was to provide a “3D engine” with an
API (Application Programming Interface) designed for R. It is implemented
as a portable shared library (written in C++) that uses OpenGL. The syntax
of the RGL commands has been based on that of the related and familiar
standard R commands, thus ensuring that users familiar with the latter can
quickly learn the usage of RGL.
This paper outlines the capabilities of the of the RGL library and illustrates
them using some typical statistical applications.

Keywords: R, OpenGL, graphical techniques, interactive visualization, real-
time rendering, 3D graphics.

1 Introduction

The R-language (Ihaka and Gentleman 1996) is a convenient and powerful tool
for statistical data analysis. The CRAN (Comprehensive R Archive Network,
http://cran.r-project.org) provides a facility for online distribution and automatic
installation of R as well as custom packages. Being an open project with many con-
tributors CRAN continuously receives new contributed libraries which are written
in a standard and well-documented format. A shortcoming of current version of
R is the lack of sophisticated methods for 3D visualization. The main goal of the
project outlined here is to provide an interface for R which acts as a “3D engine”.

1Corresponding author: Oleg Nenadić, Platz der Göttinger Sieben 5, 37073 Göttingen, Ger-
many. email: onenadi@uni-goettingen.de

1

Graphical visualization is an integral part of statistical modelling and data analysis.
Two–dimensional plots such as scatterplots, histograms and kernel smoothers are
used routinely for visualizing and analyzing data. The extension to three dimen-
sions for visualization, though seemingly trivial, generates a number theoretical and
practical challenges. Special capabilities are needed to create the illusion of three
dimensionality when projecting 3D objects on a 2D display. Appearance features
such as lighting and alpha-blending need to be created; the user should be able to
navigate around the space and to zoom in or out.

A consequence of the quantum leap that graphics hardware has taken in recent years
in terms of 3D–capabilities is that 3D applications are no longer restricted to pow-
erful CAD–workstations; they can be carried out on current entry–level computers.
Nevertheless for real-time rendering the computations need to be carried out effi-
ciently to avoid bottlenecks. RGL makes use of OpenGL as well as an important
feature R, namely the facility to call foreign code via shared libraries.

This paper describes the RGL library and gives some examples of what it currently
offers in terms of 3D real-time visualization. The remainder of the paper is arranged
as follows. Section 2 outlines the RGL function set. These provide a number of “low–
level” operations that serve as building blocks for high–level plotting operations.
Section 3 gives examples of some applied statistics graphical displays that illustrate
the use of the RGL library.

2 The RGL–package

The core of RGL is a shared library that acts as an interface between R and OpenGL.
In order to provide convenient access to OpenGL–features, a set of R–functions
which act as an API (Application Programming Interface) was written.

2.1 The RGL functions

The RGL API currently comprises 20 functions which can be divided into six cat-
egories:

• Device management functions control the RGL window device. Similar
to the R–functions win.graph(), dev.cur(), dev.off() etc., they open
and close devices, control the active device focus or shut down the device
system.

• Unlike R graphic-functions, RGL provides the option to remove certain or all
objects from the scene with the scene management functions.

• The export function enables the user to create and store PNG (Portable
Network Graphics) snapshots from a specified device. These can be used, for
example, to create animations in batch mode.

• The building blocks for 3D–objects are shape functions which provide the
essential plotting tools. Primitives, such as points, lines, triangles and quads

2

(planes) as well as higher level objects like text, spheres and surfaces are
plotted with these functions.

• Environment functions are used to modify the viewpoint, the background
and the bounding box. Also provided is a function for adding light sources to
the scenery.

• The appearance function rgl.material(...) controls the appearance
properties of shapes, backgrounds and bounding box objects. The param-
eters have been generalized to one interface for all object types that support
appearance parameters. Parameters, that do not have any influence on par-
ticular object types, are ignored.

A complete list of the currently implemented RGL functions is given in Appendix
A. Further details on standard graphics options can be obtained using help(par)
within R. The command example() illustrates the use of some RGL functions.

2.2 Shape functions

The shape functions are the essential part of RGL; they provide access to plotting
primitives. The currently implemented primitives are shown in figure 1.

Points
rgl.points(x,y,z,...)

Lines
rgl.lines(x,y,z,...)

Triangles
rgl.triangles(x,y,z,...)

Quads
rgl.quads(x,y,z,...)

Spheres
rgl.spheres(x,y,z,r,...)

Surfaces
rgl.surface(x,y,z,...)

a

b

a

b

c

a

b c

d

Figure 1: The 3D–primitives of RGL

• Points in 3D–space can be drawn with rgl.points(x,y,z,...).

• 3D Lines are drawn with rgl.lines(x,y,z,...). In this case two sets of
(x, y, z) coordinates need to be specified. The first node of the line (a) is
determined by the first elements of vectors x, y and z, while the second node
of the line (b) is given by the second elements of those vectors.

3

• 3D triangles are created with the function rgl.triangles(x,y,z,...) in a
similar way to 3D–lines. The vectors x, y and z, each of length three, specify
the coordinates of the three nodes a, b and c of the triangle in 3D–space.

• A further extension are quads (planes) which can be drawn with the function
rgl.quads(x,y,z,...). In this case x, y and z, each of length four, specify
the coordinates of the four nodes (a, b, c and d) of the quad.

• It is possible to construct (approximate) spheres or arbitrary complex objects
using small triangles but that can be time-consuming code and (unless spe-
cial care is taken) computationally inefficient. Thus, although they are not
primitives, 3D spheres are provided for convenience via the shape function-
set. A sphere with center (x, y, z) and radius r is plotted with the function
rgl.spheres(x,y,z,r,...). If x, y, z and r are vectors of length n then n
spheres are plotted using a single command.

• It is possible to approximate a 3D surface using quads but, again this can
be time-consuming and computationally inefficient. For example constructing
a surface using quads based on n2 nodes can be computed using a double
loop involving the transfer of 4 nodes of the quads n2 times. The function
rgl.surface(x,y,z,...) offers a convenient and efficient way of construct-
ing surfaces that avoids redundantly looping over individual quads. One sim-
ply specifies a matrix z of “heights” corresponding to the nodes whose coor-
dinates are given in the vectors x and y.

The above shape functions support additional attributes, such as colors and other
appearance features.

2.3 Appearance features

Features, such as alpha blending (transparency), side–dependant rendering and
lighting properties can further enhance the illusion of three-dimensionality. Some
selected appearance features are illustrated in Figure 2.

• Lighting is an important element of 3D graphical displays. Different types of
light and reflective properties of objects are supported by OpenGL. Referring
to the top left panel of Figure 2:
(a) Specular lighting determines the light on the highlight (spot) of an object,
(b) ambient lighting is the light–type of the surrounding area,
(c) diffuse lighting is the type of light scattered in all directions equally, and
(d) shininess refers to the reflective behavior of 3d–objects (glossy or matt).

• Alpha blending controls the transparency properties of 3D–objects. It is
set using alpha=x, where x ∈ [0, 1] is the transparency level; Setting x = 0
renders the objects fully transparent and x = 1 renders them entirely opaque.

• The use of texture mapping might not be initially evident. Nonetheless,
various possible applications exist, which require (or at least benefit from)
this feature. Referring to the top right panel of Figure 2 texture mapping (c)
takes a bitmap as input (a) and wraps it over the surface of a 3D–object (b).

4

Lighting features Alpha blending Texture mapping

Fog effect Internal smoothing Side - dependant rendering

a

b

c

d +

a

b

c

Figure 2: Appearance features

• Fog effects can be used to enhance the illusion of depth in a 3D–scene.
Objects closer to the viewpoint appear clearer than distant objects. The
strength of the fog–effect is a function of the distance to the viewpoint. Linear,
exponential and squared exponential strength of effect are supported.

• Internal smoothing determines the type of shading applied. Referring to
the middle left panel of Figure 2 the flat shading on the left part of the
figure results is obtained using smooth=F while the right part results from the
(default) goraud shading using smooth=T.

• Side dependant rendering allows the “front” and the “back” side of an
object to be drawn differently. Three drawing modes are supported: solid
(default), lines and points. The example in Figure 2 was created with the
option back="lines", so the front side of the surface is drawn with solid
color while the back side of the object is displayed as a grid.

The appearance features outlined above are not essential for 3D rendering but
they substantially enhance the illusion of three-dimensionality and thereby simplify
typical tasks involved in exploratory data analysis (such as discovering relationships,
identifying outliers) and in assessing the fit of models, as illustrated in the examples
in Section 3.

2.4 The navigation system

Real interactivity would not be given if the user could not explore the three–dimen-
sional space. The purpose of the navigation system is to provide intuitive access to
navigation in 3D. A pointing device (commonly a mouse) which allows for movement
in two directions, is used for travelling on a sphere surrounding the scenery (Figure

5

3 a). Zooming into the scene or away from it is performed by holding the right
mouse button pressed and moving the mouse forward or backward.(Figure 3 b).

a

b

Figure 3: RGL Navigation system

The strength of the perspective distortion or field of view (FOV) is controlled by
moving the mouse while holding the middle mouse button pressed. The function
rgl.viewpoint(theta=0,phi=15,fov=60,zoom=0) enables one to set the naviga-
tion status without a pointing device. The position on the sphere is specified by the
azimuthal direction, theta, and the colatitude, phi). The perspective distortion
and zoom–level are adjusted with the arguments fov and zoom, respectively.

3 Examples from applied statistics

The RGL functions described above constitute the basic building blocks for more
complex objects. We now give five examples to illustrate how this can be done.

Example 1: 3D-histograms
A 3D histogram can be constructed by repeatedly calling rgl.quads(x,y,z,...).
The computations are performed with standard R–commands, while the actual
drawing is carried out with RGL.

The histogram shown in Figure 4 c) is composed of bins (Figure 4 b) constructed
with 6 quads (the sides in figure 4 a). Thus a convenient method of constructing
3D histograms it is to first prepare a new “primitive”, say bin3d, that uses quads
having the required attributes and then to write a function that simply compiles the
bins into a histogram. The input parameters to the latter function are two vectors
of coordinates, x and y, that specify the histogram breaks, and a matrix z whose
entries specify the heights of the bins.

6

a b c

Figure 4: 3D–histogram

Example 2: Two–dimensional densities
Figure 5 shows two bivariate density functions together with spheres that represent
the observations. A kernel estimate of the density is displayed as a transparent sur-
face; a fitted bivariate normal distribution is shown as a wireframe. Side-dependent
rendering (see Figure 2) was used to display the two densities. Details of the fit of
the bivariate normal distribution can be examined by navigating in the space and
comparing that distribution with the non-parametric kernel estimate.

Figure 5: Visualizing and comparing bivariate densities.

Example 3: Three–dimensional densities
Appropriate use of transparency makes it possible to represent three-dimensional
probability density functions reasonably convincingly. Figure 6 shows the density
function of a 3D normal distribution. The value of the density (the 4th dimension)
is indicated by the transparency of particles placed on a fine regular 3D–grid. The
illusion of higher dimensionality is enhanced when one navigates around the space
and makes use of zooming.

7

Figure 6: Three–dimensional normal pdf.

Example 4: Representing animal populations
To assess the properties of animal abundance estimators under various conditions
it is useful to test the estimators on generated data (see, e.g. Borchers, Buckland
and Zucchini, 2002). In particular the behavior of estimators can depend, among
other things, on the distribution of animals in the survey region, on the size and
composition of the groups (herds) and on their exposure (how easily they can be
detected or captured. Figures 7 a) and b) display the specified population density
that was used to generate a population comprising several groups that are displayed
as spheres. The population density is displayed as a topographic surface – regions
with high density are displayed as mountains and those with low density as valleys.
Regions having zero density are shown as “rivers”. The characteristics of a group,
namely its size, type and exposure are indicated by the sphere’s radius, color and
transparency level, respectively.

a b

Figure 7: Simulated animal abundance.

Example 5: An application in hydrology
The data for the following 3D–visualization is taken from the South African Rainfall
Atlas (Nenadić, Kratz and Zucchini, 2001). Figure 8 shows a topographic map of
Southern Africa (South Africa, Lesotho and Swaziland). The mean annual rainfall
in the region is displayed in form of clouds. The thickness and (lack of) transparency

8

of the cloud above a site is used to indicate the magnitude of the mean rainfall at
the site.

Figure 8: Topographic map of Southern Africa with the mean annual rainfall rep-
resented by clouds.

4 Summary and outlook

The main goal of the project described in this paper was to provide R users with an
additional set of graphical tools to create interactive three–dimensional graphical
displays, namely a flexible and convenient generalized interface. The RGL library
provides the building blocks to facilitate three–dimensional, real-time visualization
in R.

Although RGL is still in development stage it already offers numerous capabili-
ties that extend the current R graphics package. Some elements, such as mesh–
primitives or even NURBS have not been implemented. However, with the basic
building blocks that RGL provides plus a little creativity, users can already con-
struct their own types of objects and functions and display these interactively in
three-dimensions.

In this paper we have focused on the core elements of the package and have given
some typical statistical applications to illustrate the capabilities of the current im-
plementation of the library. Details relating to software–architecture have not been
given here; a report on that aspect of the project is in preparation.

Apart from enhancing portability (an issue that we have not discussed in this paper)
future plans include providing support for dynamic graphics and X3D/VRML sup-
port. Feedback and suggestions for improvements and extensions are very welcome
and will certainly be considered for future development.

9

5 References

Borchers, D.L., Buckland, S.T. and Zucchini, W. (2002), Estimating Animal
Abundance: closed populations. Springer–Verlag, London.

Ihaka, R. and Gentleman, R. (1996), R: A Language for Data Analysis and
Graphics, Journal of Computational and Graphical Statistics, 5(3), 299–314.

Nenadić, O., Kratz, G. and Zucchini, W. (2002), The Development of a Web–
based Rainfall Atlas for Southern Africa, Short Communication, Compstat
2002, Berlin.

10

A Appendix: The RGL–functions

function description
Device management:
rgl.open() Opens a new device.
rgl.close() Closes the current device.
rgl.cur() Returns the number of the active device.
rgl.set(which) Sets a device as active.
rgl.quit() Shuts down the subsystem and detaches RGL.
Scene management:
rgl.clear(type="shapes") Clears the scene from the stack of specified type

(“shapes” or “lights”).
rgl.pop(type="shapes") Removes the last added node from stack.
Export functions:
rgl.snapshot(file) Saves a screenshot of the current scene in PNG–

format.
Shape functions:
rgl.points(x,y,z,...) Draws a point at x, y and z.
rgl.lines(x,y,z,...) Draws lines with nodes (xi, yi, zi), i = 1, 2.
rgl.triangles(x,y,z,...) Draws triangles with nodes (xi, yi, zi), i = 1, 2, 3.
rgl.quads(x,y,z,...) Draws quads with nodes (xi, yi, zi), i = 1, 2, 3, 4.
rgl.spheres(x,y,z,r,...) Draws spheres with center (x, y, z) and radius r.
rgl.texts(x,y,z,text,...) Adds text to the scene.
rgl.surface(x,y,z,...) Adds a surface defined by two grid mark vectors

x and y and a surface height matrix z.
Environment setup:
rgl.viewpoint(theta,phi,
fov,zoom,interactive)

Sets the viewpoint (theta, phi) in polar coordi-
nates with a field–of–view angle fov and a zoom
factor zoom. The logical flag interactive speci-
fies whether or not navigation is allowed.

rgl.light(theta,phi,...) Adds a light source to the scene.
rgl.bg(...) Sets the background.
rgl.bbox(...) Sets the bounding box.
Appearance functions:
rgl.material(...) Generalized interface for appearance parameters

(cf. Section 2.3).

Table 1: The 20 RGL functions which constitute the API, grouped by category. The
usual graphics parameters are permitted as arguments to functions which have ”...”
in their calling sequence. (For details see par() in the R base library.)

11

